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1 Discrete distributions

1.1 Bernoulli distribution
e Notation: Ber(p)
e EX]=1"p+0*%(1-p)=p
e Var(X) = p(l - p)

1.2 Geometric distribution
e F[X]= 1% (p- 93)

1.3 Binomial distribution

e Any random variable X ~ Bin(n,p) can be represented as X = Ry +- -+
R,, where R; ~ Ber(p) (p. 138)

e E[X] =np (p. 138)
e Var(X) = np(1l - p) (p. 141)

e Let X ~ Bin(n,p) and Y ~ Bin(m,p). Then Z ~ Bin(n + m,p) where
Z=X+Y (p. 153)

e For sufficiently large N, binomial distribution can be approximated by
standard normal distribution, see concrete example on page 201.
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Continuous distributions

Uniform distribution
EX]=1(b+a)

PDF:
{ﬁia, if x € [, f]

0, otherwise

CDF:

o, fxe [, B]
F(z)=<0, ifr<a
1, ife>p

Normal distribution
E[X]=p (p. 94)
Var(X) =o? (p. 97)

For X ~ N(u,0?%), and Y = g(X) = rX + s for any s and r # 0, we can
write that Y has an N(ru + s,r20?) distribution. (p. 106). This is also
how you can derive standard normal distribution.

If X and Y are independent random variables with normal distribution,

then their sum Z = X +Y is also normally distributed (p. 158)

Exponential distribution
E[X] =1 (p. 93)
Sum of n independent random variables X; ~ Exp()A has distribution
Gam(n, A) (p. 157)

Gamma distribution

PDF - see page 157

Cauchy distribution
PDF - see page 161

Let X and Y be two random variables from standard normal distribution.
Let Z = %%, then Z ~ Cau(0,1)



3 Useful formulas & concepts - PROBABILITY

3.1 Continuous random variable
o F(b) = [° f(2)da
. [(@) = £F()

3.2 Conditional probability

Bayes theorem

_ P(XnY) _ P(Y|X)P(X
o P(X|Y) = Zpy? = POy

o P(Y)=P(YNX)+PYNX) =PY|X)P(X)+ P(Y|X)P(X°)

3.3 Expectation
e Discrete: E[X]| =3, a; * P(X =a;) (p. 90)
e Continuous: E[X] = [%_z* f(z)dz (p. 91)
e Both continuous and discrete:

— Linearity of the Expectation (p. 137):
Elaf(X) 4 Bg(X) +t] = aE[f(X)] + BE[g(X)] + 1

e If you apply function g on the random variable X, then on page 96, find
what happens to expectation (in general). See below a specific case for g:

—Let Y = g(X) = rX + s, then E[Y] = E[¢g(X)] = ErX +s] =
rE[X] 4+ s (p. 98) This also implies that E[g(X)] = g(F[X]) (p. 106
- bottom). In other words, E[Y] = g(F[X]). In words, to you can
obtain expected value of Y simply by applying g(X) = rX + s on
E[X]. Note, that this holds only for the above mentioned function
g. If the function would be different, it may not apply!

e In case, you apply function g on more than one random variable, for in-
stance g(X,Y"), then look on page 136 to see how to compute the expected
value of the new random variable Z, obtained such that Z = g(X,Y).

o If X and Y are independent random variables then E[XY]| = E[X]|E[Y]

e Let X4,...,X, be asequence of identically distributed and indepen-
dent (i.i.d.) random variables with distribution function F, expected

value p and standard deviation o. Then E[X, ] = u. (p. 182)



3.4 Variance

3.4.1 One variable
o Var(X) = E[X?] — (E[X])? (p. 97)
o Var(rX +s)=r*Var(X) (p. 98)

3.4.2 More variables
For simplicity, examples will be made on just two random variables X,Y.

e Covariance: To some extent expresses how two variables X and Y in-
fluence each other. Cov(X,Y) = E[XY]| — E[X]|E[Y] We speak of three
kinds of covariance: positively and negatively correlated, and uncorre-
lated. For detail, see page 139. Notice from this formula one thing, if
E[XY] = E[X][Y], then Cov(X,Y) = 0. This happens only if X and
Y are independent. (p. 140) Note, that just because two variables are
dependent, it does not mean that they are correlated. There are ex-
amples of dependent random variables X and Y which are uncorrelated,
ie, Cov(X,Y) = 0. So the bottom line is If X and Y are inde-
pendent random variables, then they are uncorrelated. (On the
opposite site, you CAN NOT say: If two random variables X and Y are
uncorrelated, then they are independent)

e Correlation coefficient

— Covariance under change of units: Cov(rX+s,tY+u) = rtCov(X,Y).
This rule simply shows that covariance value is influenced by change
of units and thus, it is not very reliable to look at. (p. 141) For ex-
ample the choice of unit for a random variable X, e.g., centimeters vs.
inches, implies different covariance: Cov(Xcp,Y) # Cov(Xinches, Y)

— Because of the above reason, standardized version of covariance is
introduced - correlation coefficient - see page 142.

e Variance of a sum (p. 140)

— Xand Y are dependent: Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y)
— X and Y are independent: Var(X +Y) = Var(X) + Var(Y)

3.4.3 Variance of an average

To use the below formula, make sure that X,, is the average of n independent
random variables with the same expectation u and variance o2

e Var(X,) = %2 (p. 182)



e Note, that this is an important implication for the Law of large num-
bers. Namely, notice that SD(X,,) = ﬁ This means that as n grows,

SD is decreasing by a factor of v/n. We know that expected value of X,
is p. So if you put these two information together, you can see that as n
grows larger, you have larger and larger probability that you will actually
obtain u via X,,.

3.5 Change of variable - impact on distribution

This precisely means that if we have a random variable X, and apply on it a
function g, we obtain a new random variable Y, such that ¥ = ¢g(X). (p. 103)

e Discrete: There is no formula, see example on page 103, where they show
how to approach such problem.

e Continuous: In general, there is no formula. However, in the book, they
show following two specific cases:

— When Y =g¢(X) = %, and you know fx, then for y # 0

, usually for y =0, f(0) = 0. (p. 105)
— Let Y = g(X) =rX + s where r, s € R. Then Fy (y) is:

Fy(y) = Fx(L=2)

and for fy(y), it applies that:

Friw) = 1x ()

r

, all can be found on page 106.

— Distribution of Maximum and Minimum: In this problem, you
have several independent random variables, which have same dis-
tribution function F' and you apply on them a function g, which is
either max or min. For example, for max: Z = g(X1,...,X,) =
max(Xy,...,X,). You are interested, what will be the distribution
function of Z. For formulas, see the page 109.

3.6 Sum, product and quotient of two random indepen-
dent variables

This section assumes that you

e have two independent random variables X and Y

e you are interested what will be the distribution when you sum, multiply
or divide the above mentioned random variables



3.6.1 Sum
Discrete random variables

e pz(c) = .px(a;)py(b;) where ¢ = a; + b; (p. 152)
Continuous random variables

e See page 156.

3.6.2 Product and quotient
See page 160 and 161.

3.7 Jensen’s inequality

I am not quite sure where to apply this concept apart from proving something.
The exact definition can be found on page 107. The key takeaways should be:

e If g is a convex function, see page 107, how to check that, and X is a
random variable, then g(F[X]) < E[g(X)]. In words, this means that you
know that if you apply function g on the expected value of X, then the
result will be smaller or equal to the expected value of a new variable Y,
which you obtained such that Y = g(X).

3.8 Chebyshev’s inequality

Chebyshev’s inequality gives you the bound for a probability that random
variable X will be outside the interval (E[X] — a, E[X] 4 a) where a > 0. Here
are the important versions of the Chebyshev’s inequality derived from the book:

e P(IX —E[X]]| 2 a) < V%gx) (p. 183) Description of what this says is
in the intro. Note, that this formula gives you an upper bound for the
probability

e P(IX —pu| < ko) >1— 75 (p. 185) This gives you a lower bound that
realization of random variable X is within k standard deviations from the
expected value of X, i.e. p.

3.9 Joint distribution

When do we talk about a joint distribution? Whenever there is more than one
random variable in play. Consider these examples:

e Throw of a dice six times in a row modeled by X,..., Xg

e Sampling without replacement modeled by X;,..., X,



Here is a very good summary of this topic. Key takeaway from this article
is that in order to be able to compute the joint probability distribution, we
need to know whether the variables are independent or dependent. Note, that
in many problems in the book, you are already given for example joint CDF,
and you are supposed to for example compute joint PDF and marginal PDF,
and then based on that determine whether the two variables are dependent or
independent. (Lecture 6 - Ex. 3)

3.10 Independence of random variables

Examples will be made for simplicity on two random variables X, Y, but the
rules can be then applied to more than two variables indeed.

e Discrete random variables - check that for all z, y holds true that P(X =
z,Y =y) = P(X =z)P(Y = y). In words, check that joint probability of
particular events can be computed by multiplying marginal probabilities
of those events.

e Continuous random variables - check that for all x,y holds true that

f@,y) = f(2)f(y)

3.10.1 Propagation of independence

The idea is very simple, if you have a set of independent random variables X,
and you transform them using a function h;, then the resulting set of variables
Y; will be also independent. The core rule here for independence is that all Y
must be based on X.

Let’s say that for instance, you have a set of random variables X ~ U(0, 1).
You also have a function g(X) = 2X2. Then, for every even realization of X, i.e.,
Xo;, you will produce set of random variables T such that T; = g(Xa;). Similarly,
for every odd realization of X, you will produce set of random variables S
such that S; = ¢(Y2;41). Then, you know that Sy,T7,Ss,T5,.... is a set of
independent random variables.

3.11 The law of large numbers

It says that as n goes to infinity, the probability that difference between average
of n ii.d. random variables X and the true expected value of X, i.e., p, is O.

o lim, ,. P(|X, —pu|>¢€) =0. (p. 186) Note that this a weak version of a
law of large numbers.

e Strong version is: P(limy, oo X, = ) = 1 (p. 187)

3.11.1 Application of the law of large numbers

The book says that you can derive any property of probability distribution of
X using the Law of large numbers. The book makes following examples:


https://bit.ly/3hoqaMr

Recovering probability of an event

You have a sample of i.i.d. random variables X7, ..., X,,, and you want to know
p = P(X = C) where C is an event. In order to get a valid estimate for p,
you can count number of times X hits the event C' within the sequences and
divide that by n. The larger the sample is, the better chance you have that the
estimate will be accurate.

Recovering the probability density function

If you have a continuous random variable, then the procedure to obtain an esti-
mate for probability of an event is same as above. But even more important here
is to realize that if you use histogram, then this is actually a good estimation
of the underlying distribution. (page 190)

3.12 The central limit theorem

Central limit theorem serves you as a tool to approximate probability distri-
bution of either:

e Averages of i.i.d. random variables X, i.e., distribution of X,. The

following equation is important here: Z,, = \/na2=£_ (p. 197)

o

e Sum of i.i.d. random variables X. Here, following equation is important

) A— X1+ 4+Xn—np

n — o/n .
Note that as n — oo, Z, ~ N(0,1) and that is why central limit theorem
is useful. On the other hand, have to be critical about the approximations
you get. One factor is the size of n. Another factor is for example whether
the distribution where X comes from is discrete, since then you ary trying to

approximate discrete distribution by continuous.



4 Useful formulas and concepts - STATISTICS

4.1 Bootstrap principle

There are two kinds of bootstrap:

e Empirical bootstrap: Use when you are given data from unknown dis-
tribution F. Here is an application example from the class. You decided
to estimate p of F' using the sample mean, i.e., T,,.The problem with this
approach is that if you got a new sample from F, your approximation
would be different. Therefore, by using bootstrap, you simulate the dis-
tribution of centered mean which tells you how likely it is that other
means will differ by a certain distance. Note, you have to use centered
mean as this has been proved to be unbiased.

e Parametric bootstrap: When you use empirical bootstrap, you approx-
imate F' by F),. In this case, however, you approximate F' by Fy. What
is Fy? Let’s say you looked at histogram of sample data, and they seem
to be normally distributed. Therefore, based on the sample, you approxi-
mate p by Z,, and o2 by S2, and then you will bootstrap the sample using
Fg = N(En, 5721)

4.2 Unbiased estimators

4.2.1 TUnbiased estimators for mean and variance

Estimators is unbiased if F[T] = 6 where 6 is the parameter of our interest. The
difference E[T] — 0 is called bias.

e Mean of the sample and variance of the sample are UNBIASED estimators
for the expectation and variance of the true distribution. NOTE: There
is not unbiased estimator for standard deviation.

e Unbiasedness does not carry over. If T is an unbiased estimator, it does
NOT necessary mean that g(T) will be also unbiased estimator. There is
once exception to this: g(T) = aT + b for a,b € R

4.2.2 Maximum likelihood estimator

For context, maximum likelihood estimator is important since it has some very
useful properties which makes is well applicable in practice. Namely, it is

e Asymptotically unbiased

e Asymptotically minimum variance



4.2.3 The method of least squares
Here is a typical setting:

e You are given a bi-variate data set (z;,y;) such that X; is a non-random
variable and Y; is a random variable.

e Y; = a+ fx; + U; where U; is a random variable with zero expectation
and variance o2. (represent a simple linear regression model)

e Your goal is to estimate parameters a, 3, 0% such that we come up with a
line that best fits the points. To do so, you can use least square method

e Finally, notice that since you have no knowledge regards to the distribution
of Y;, it is not possible to use maximum likelihood estimator.

Least squares method - formula
You want to find parameters «, 8 such that:

n

S(a, B) = Z(yz —a— fBx;)?

i=1
is minimal. (p. 329)

Least squares method - unbiased estimators
In the book on page 331, it is then derived that unbiased estimators for «, 8

are: o A ey - . Y.
N e

In addition, unbiased estimator for o2 is:

4.3 Confidence interval

When using estimators for estimating different features of a distribution from
a sample, we give a single number. The idea of confidence intervals is to give
interval within which we are confident at a certain level that the feature of
interest is. Things to be aware of:

e You can say only: we are 100y % (e.g. 95 %) confident that 6 € some
interval

e It would be incorrect to say that with probability v, 8 € some interval.
This is because @ is just a number not a random variable, thus we can not
speak about probability. (See more precise info on page 342)

e See precise definition of confidence intervals on page 343.

10



4.3.1 Find two sided confidence interval for the mean of sample

For the later use, it is useful to know the definition of studentized mean of
a normal random sample:

Xn—p

Sn/v/n
Based on the definition in the book from page 349, if X ~ N(u,0?), then
studentized mean, as defined above, has ¢(n — 1) distribution regardless of the
values of pu,o.

Normal distribution: known variance
The formula is as follows (p. 347):

(En - Za/2L7fn + Za/Zi)
NG NG

where @ = 1—+. And z, can be computed as P(Z > z,) = p where Z ~ N(0,1).
In R, you can use the following command to compute z, /o:

gnorm(a/2, mean = 0, sd = 1, lower.tail = FALSE)

Note, here you make an assumption that « is between both tails (lower, upper)
distributed equally. In more general terms, the above formula is:

_ o _ o
(xn - Cuﬁaxn - Cl%)

where ¢; and ¢, are lower and upper critical values respectively. Let’s say a =
0.05, but you want to obtain lower critical value such that ¢; = P(Z < z) = 0.01
and upper critical value such that ¢, = P(Z > z) = 0.04. In this case, you can
use R as follows:

TRUE)
FALSE)

c.l = gnorm(0.01, mean = 0, sd = 1, lower.tail
c.u gnorm(0.04, mean = 0, sd = 1, lower.tail

Normal distribution: UN-known variance
The formula is as follows:

— STL — S'H/
(T — tnfl,a/Zﬁv Tn+ tnfl,a/2ﬁ)

There are following two differences compare to the previous formula:
e Instead of o, you use s,, (standard deviation of the given sample)

e Because of the above change, you need to obtain critical values from a
t-distribution, not standard normal distribution. Why t-distribution?
Because above formula was computed using studentized mean, see the
above definition of it and implications regards to its distribution.

To obtain critical values where o = 0.05 and we split « evenly between the tails,
you can write in R to obtain ¢,,_; o /2:

11



qt(a/2, df = n - 1, lower.tail = FALSE)

In the case, where we decide to distribute « not evenly within the tails (assume
the similar example as in previous section), we can write:

c.1l = qt(0.01, df
qt(0.04, df

n - 1, lower.tail = TRUE)
n - 1, lower.tail = FALSE)

and then use it in the equation:

Any distribution using bootstrap
Use this method if:

e You doubt the normality of data (or just can not assume the data is
normal)

e The sample size is not large enough

Compare to previous case, we no longer know, what is the distribution of stu-
dentized mean since we can not assume the normality. For this reason, we
can use bootstrap to approximate distribution of studentized mean and then
via this distribution obtain critical values. (see the procedure on page 351)
Note, advantage of bootstrap compare to the previous two methods is that it
adapts to the shape of distribution and it reflects that in the obtained intervals.
See the page 353 for more detail.

Any distribution using assumption about large sample size

If you can assume that your sample size is large enough, you can use the central
limit theorem which states that as n goes to infinity, distribution of studen-
tized mean can be approximated by N(0,1). What is large enough? There is
no rule. You can obtain the confidence interval as follows:

_ Sn _ Sn
(T — Za/2ﬁ7xn + Za/2ﬁ)
where @ = 1—+. And z, can be computed as P(Z > z,) = p where Z ~ N(0,1).
In R, you can use the following command to compute z, /o:

gnorm(a/2, mean = 0, sd = 1, lower.tail = FALSE)

4.3.2 Find ONE sided confidence interval for the mean of sample

Essentially, the only difference between this sub chapter and the previous one is
that here we are interested in one sided confidence interval, i.e., we need to
compute only one critical value. So for clarity, here are the concrete examples
for above mentioned cases:

12



e Normal distribution: known variance

Lower: (Z,, — zai, oo) Upper: (—o00,Z, + zai)

vn vn

e Normal distribution: UN-known variance

Lower: (T, — tn_17a%, oo) Upper: (—o0, T, + tn—l,a%)

e Any distribution: bootstrap

Lower: (T, oo) Upper: (—o0, Ty )

* Sn * Sn
v v

4.3.3 Find sample size needed to obtain confidence interval of given
width w

e Data comes from a normal distribution with known variance o2:

)2

224 /920
n > (2222
w

e Data comes from a normal distribution with unknown variance

o2

4.4 Testing hypothesis: General approach

This section covers the general intro and all important terms for hypothesis
testing to which we were introduced in lecture 12.

P-value
= probability of the given event itself + probability of events which are equally
likely + probability of events that are even rarer (more extreme)

Critical region and critical values

e To avoid computing P-value, you can compute critical region based on
the significance level. You want to find value(s) ¢ such that P(T > ¢) or
P(T < ¢) is equal to the significance level where T is your test statistic.

Interpretation of P-value
See Verzani page 296, 2nd paragraph, it is explained really well how to interpret
the results.

Type I and type II error

e Type I error: you decide to reject null hypothesis, you made either a
correct decision or type I error. You can control how likely you are to
make type I error by setting a significance level a. Note, that you never

13



know whether you made the error, you just know using the significance
level, how likely this is to happen. In other words, when you conclude to
reject the null hypothesis, there is still a chance that you made a wrong
decision.

e Type II error: you decide not to reject null hypothesis, you made either
a correct decision or type II error. In this case, there is no way how you
can control how large the type II error will be. Why? Since it depends on
the parameters of test statistic which are in turn dependent on alternative
hypothesis. Recall, that alternative hypothesis is usually something like
1 > 120. So there are many p and thus many possible ways for probability
of type II error.

4.5 Testing hypothesis: Significance test for population
proportion

Here is the setting of the problem:
e You are given a data set which represents a random sample from X;, ..., X,

e You are given some known proportion, denote this by py (e.g. approval
rate of a politician)

e You design your hypothesis as follows: H : p = pg where p represents the
new unknown proportion. Via your null hypothesis, you assume that old
proportion is the same as the new one. As your alternative hypothesis,
you can choose Hy : p # pg, p < po or p > pg.

4.6 Testing hypothesis: T-test
4.6.1 One sample

Assume, you have a sample which is a realization of random variables X1, ..., X,.
Your null hypothesis is Hy : 4 = po and alternative hypothesis is Hy : u # pyo.
Usually the question is framed like Is the true value of the distribution from

which sample comes equal to pg? Your test statistic T is given by T = )S(:/_\;‘ﬁ“

(this is studentized mean) Choose appropriate method based on whether the
data comes from normal distribution or not:

e Normal data: t-test - In the case where X ~ N(u,0?), you know that
T ~t(n—1) (p. 349).

e Non - normal data: SND or Bootstrap In this case you have two
options:

— If the sample size is large, i.e., n is sufficiently large, you can approx-
imate the distribution of 7' by standard normal distribution:
T~ N(0,1)

14



— Bootstrap method - to approximate the distribution of T, use the
bootstrap method described on page 351. (Or see lecture 11 - exercise
6)

4.6.2 Two samples

Here are the assumptions for the examples below:
e You have two samples: X1,...,X,, and Y7,...,Y,,

e Each sample has its own distribution: Fx, Fy, with expected values px
and py

e Your null hypothesis is Hy : px = py and alternative hypothesis H; :
wx # py. In words, you want to test, whether the two distributions have
same expected values. Alternative hypothesis can be also Hy : ux < py
or Hy : ux > py.

e Both variances 0% and 0% are unknown.

e Your test statisticis T = X,,—Y ,,. Note, that T needs to be standardized.
This will be done and explained in the below sections based on whether
the variances are or are not equal.

Samples have equal variances

Since samples have the same variances, you will standardize the T by pooled
standard deviation S,. It is important to notice that 7}, represents pooled
studentized mean difference See page 417 for the formula.

Normal data - 2 sample t-test

e Based on the normality assumption, you know that T}, ~ t(n +m —2) (p.
417)

Non-Normal data - bootstrap

e You can NOT longer assume that T}, ~ t(n + m — 2) and for this reason,
you need to approximate the distribution of T" using a bootstrap method
which is described on page 418.

Samples have unequal variances

Since samples have DIFFERENT variances, you will standardize T" by non-
pooled standard deviation S;. It is important to notice that Ty represents non-
pooled studentized mean difference See page 420 for the formula.

Normal data - Welsch’s test

15



Based on Sami’s slide you can write Ty ~ t(v) where

2
(2.9
n m
Sk Sy
n?(n—1) m?(m—1)

Non-Normal data - bootstrap

Unfortunately, in this case, the only option is to approximate using boot-
strap method distribution of Ty. The procedure is same as in previous section,
the only difference is that now at each iteration you compute non-pooled stu-
dentized mean difference.

Large samples

If n and m are large enough, then you can approximate both 7}, and Ty by stan-
dard normal distribution. Indeed, you have to first decide whether the samples
have equal or different variance, but after that, especially in cases, where you
need to bootstrap the distribution, it is useful to use this method instead as-
suming the sample sizes are large enough.
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